Concours Général Maths 2024 : Eléments de correction

Il s'agit ici d'un travail personnel, qui ne prétend pas être une correction « officielle ». Seuls les problèmes 1 et 3 sont étudiés.

Exercice 1: Etude d'une suite

Partie 1 : Généralités.

1. Il s'agit dans cette question 1 de justifier la légitimité de la construction par récurrence de la suite « associée à α ». Un terme de la suite n'admet un successeur que s'il est positif.

Montrons par récurrence sur n que la propriété \wp_n : « $u_n \ge 0$ » est vérifiée pour tout entier naturel n. Initialisation : $u_0 = \alpha \ge 0$ par hypothèse, ce qui montre que \wp_0 est vérifiée.

Hérédité : Supposons que, pour un certain entier naturel n, la propriété \wp_n : « $u_n \ge 0$ » soit vérifiée. Alors, puisque la fonction racine carrée est définie sur \mathbb{R}^+ et prend ses valeurs dans ce même ensemble, le nombre $\sqrt{u_n}$ existe et est supérieur ou égal à 0.

Il en résulte que : $u_{n+1}=\frac{1}{n+1}+\sqrt{u_n}\geq 0$ (positif car somme de deux nombres positifs) Si \mathscr{D}_n est vérifiée, alors \mathscr{D}_{n+1} l'est aussi, la propriété \mathscr{D}_n est héréditaire.

Etant initialisée au rang 0 et héréditaire, cette propriété \wp_n est vérifiée pour tout entier $n \geq 0$.

Tous les termes de la suite associée à α sont positifs.

2. Soit deux réels tels que $\beta \geq \alpha \geq 0$ et les suites (v_n) et (u_n) qui leur sont respectivement associées (la positivité des nombres α et β garantit l'existence de ces suites qui sont des suites de nombres positifs.) Montrons par récurrence sur n que la propriété \wp_n : « $v_n \geq u_n$ » est vérifiée pour tout entier naturel n. Initialisation: $v_0 = \beta \geq \alpha = u_0$ par hypothèse, ce qui montre que \wp_0 est vérifiée.

Hérédité: Supposons que, pour un certain entier naturel n, la propriété \wp_n : « $v_n \ge u_n$ » soit vérifiée.

Alors, puisque la fonction racine carrée est une fonction croissante sur \mathbb{R}^+ , elle conserve le sens des inégalités :

$$v_n \ge u_n \implies \sqrt{v_n} \ge \sqrt{u_n}$$
 et en conséquence : $v_{n+1} = \frac{1}{n+1} + \sqrt{v_n} \ge \frac{1}{n+1} + \sqrt{u_n} = u_{n+1}$

Si \wp_n est vérifiée, alors \wp_{n+1} l'est aussi, la propriété \wp_n est héréditaire.

Etant initialisée au rang 0 et héréditaire, cette propriété \wp_n est vérifiée pour tout entier $n \geq 0$.

Pour tout entier naturel $n: v_n \ge u_n$

3. Soit (w_n) la suite associée à 0. Montrons par récurrence sur n que la propriété \wp_n : « $w_n \ge 1$ » est vérifiée pour tout entier strictement positif n.

Initialisation: $w_1 = \frac{1}{0+1} + \sqrt{0} = 1$ ce qui montre que \wp_1 est vérifiée.

Hérédité : Supposons que, pour un certain entier strictement positif n, la propriété \wp_n : « $w_n \ge 1$ » soit vérifiée.

Alors, puisque la fonction racine carrée est une fonction croissante sur \mathbb{R}^+ , elle conserve le sens des inégalités :

$$w_n \ge 1 \implies \sqrt{w_n} \ge \sqrt{1} = 1$$
 et en conséquence : $w_{n+1} = \frac{1}{n+1} + \sqrt{w_n} \ge \frac{1}{n+1} + 1 \ge 1$

Si \wp_n est vérifiée, alors \wp_{n+1} l'est aussi, la propriété \wp_n est héréditaire.

Etant initialisée au rang 1 et héréditaire, cette propriété \wp_n est vérifiée pour tout entier $n \geq 1$.

Pour tout entier strictement positif $n: w_n \ge 1$

NB. Si tous les termes de la suite associée à 0 sont ≥ 1 , alors d'après la **question 2** il en est de même de tous les termes de toute suite (u_n) associée à un réel positif donné α puisqu'une telle suite majore (w_n) . Pour tout entier naturel $n: u_n \geq w_n \geq 1$.

4. Supposons que la suite (u_n) associée à un réel positif donné α soit convergente vers un réel ℓ . D'après la remarque de la question précédente : $\ell \geq 1$.

Passons à la limite dans la relation de récurrence, en tenant compte que la limite d'une suite ne dépend pas d'un décalage d'indexation :

$$\ell = \lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} \left(\frac{1}{n+1} + \sqrt{u_n} \right) = \lim_{n \to \infty} \left(\frac{1}{n+1} \right) + \lim_{n \to \infty} \left(\sqrt{u_n} \right)$$

D'une part $\lim_{n\to\infty}\left(\frac{1}{n+1}\right)=0$ et d'autre part, la fonction racine carrée étant continue sur \mathbb{R}^+ , donc en particulier en ℓ , $\lim_{n\to\infty}\left(\sqrt{u_n}\right)=\int_{n\to\infty}^{\lim}u_n=\sqrt{\ell}$.

Il en résulte que le nombre ℓ est solution de l'équation $\ell=\sqrt{\ell}$. Cette équation ayant pour solutions 0 et 1, la seule possibilité dans ce contexte est $\ell=1$.

Si la suite (u_n) associée à un réel positif donné α est convergente, alors elle converge vers 1.

5. Considérons la suite (u_n) associée à un réel positif donné α . Etudions les différences de deux termes consécutifs de cette suite, en écrivant à leur propos une relation de récurrence :

$$u_{n+2} - u_{n+1} = \left(\frac{1}{n+2} + \sqrt{u_{n+1}}\right) - \left(\frac{1}{n+1} + \sqrt{u_n}\right) = -\frac{1}{(n+1)(n+2)} + \left(\sqrt{u_{n+1}} - \sqrt{u_n}\right)$$
$$u_{n+2} - u_{n+1} = -\frac{1}{(n+1)(n+2)} + \frac{(u_{n+1} - u_n)}{\sqrt{u_{n+1}} + \sqrt{u_n}}$$

Déterminons une condition pour que la propriété \wp_n : « $u_{n+1}-u_n \leq 0$ » soit vérifiée.

Hérédité : Supposons que, pour un certain entier naturel n, la propriété \wp_n : « $u_{n+1}-u_n \leq 0$ » soit vérifiée. Alors, nous avons aussi $u_{n+2}-u_{n+1} \leq 0$ car $u_{n+2}-u_{n+1}$ est dans ce cas la somme des deux nombres réels négatifs, $-\frac{1}{(n+1)(n+2)}$ et $\frac{(u_{n+1}-u_n)}{\sqrt{u_{n+1}}+\sqrt{u_n}}$

Si \wp_n est vérifiée, alors \wp_{n+1} l'est aussi, la propriété \wp_n est héréditaire.

Initialisation:

Remarquons d'abord que $\sqrt{\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{2}$. Le lecteur pourra vérifier que $\left(\frac{1+\sqrt{5}}{2}\right)^2=\frac{3+\sqrt{5}}{2}$

Evaluons la différence entre les deux premiers termes de cette suite : $u_1-u_0=\left(1+\sqrt{\alpha}\right)-\alpha$

Cette différence est la valeur en $b=\sqrt{\alpha}$ du trinôme du second degré T défini par : $T(b)=-b^2+b+1$.

Or, ce trinôme T a deux racines, $\frac{1+\sqrt{5}}{2}$; $\frac{1-\sqrt{5}}{2}$ et se factorise en : $T(b)=-\Big(b-\frac{1+\sqrt{5}}{2}\Big)\Big(b-\frac{1-\sqrt{5}}{2}\Big)$.

Il est strictement négatif quand $b > \frac{1+\sqrt{5}}{2}$.

Lorsque $\alpha > \frac{3+\sqrt{5}}{2}$, nous avons $\sqrt{\alpha} > \frac{1+\sqrt{5}}{2}$ et $u_1 - u_0 = T(\sqrt{\alpha}) < 0$. En conséquence \wp_0 est vérifiée.

Ainsi, la condition $\alpha>\frac{3+\sqrt{5}}{2}$ permet l'initialisation au rang 0 de la propriété $\wp_n:$ « $u_{n+1}-u_n\leq 0$ ».

Lorsque $\alpha>\frac{3+\sqrt{5}}{2}$, la propriété $\wp_n:$ « $u_{n+1}-u_n\leq 0$ » est vérifiée pour tout entier naturel n, la suite associée à α est alors une suite décroissante.

Une telle suite étant décroissante et minorée par 1 est convergente. Elle converge donc vers 1, seule limite possible.

Considérons maintenant une suite (u_n) associée à un réel $\alpha \leq \frac{3+\sqrt{5}}{2}$. D'après la question 2, elle est majorée par n'importe quelle suite associée à un réel $> \frac{3+\sqrt{5}}{2}$ (par exemple celle qui est associée à 3). (u_n) est donc encadrée par la suite constante 1 (d'après la question 3) et par une suite qui converge vers 1. D'après le théorème des gendarmes, elle converge vers 1.

Ainsi, toute suite (u_n) associée à un nombre positif α converge vers 1, que $\alpha > \frac{3+\sqrt{5}}{2}$ ou non.

Partie 2: Un cas particulier.

6. NB. Dans cette question, nous admettons et utiliserons un encadrement de la fonction $x \mapsto \sqrt{1+x}$ qui est l'encadrement, pour tout réel x positif : $1+\frac{x}{2}-\frac{x^2}{8} \le \sqrt{1+x} \le 1+\frac{x}{2}$

Montrons par récurrence sur n que la propriété \wp_n : « $1+\frac{2}{n} \le t_n \le 1+\frac{3}{n}$ » est vérifiée pour tout entier strictement positif n.

Initialisation : En consultant les résultats affichés par l'algorithme précédent, nous constatons que \mathscr{D}_k est vérifiée pour tout entier n allant de 1 à 10.

Hérédité : Supposons que la propriété \wp_n : « $1+\frac{2}{n} \le t_n \le 1+\frac{3}{n}$ » soit vérifiée pour un certain entier strictement positif n.

Compte tenu de la relation de récurrence $t_{n+1}=\frac{1}{n+1}+\sqrt{t_n}$ et du fait que la fonction racine carrée conserve le sens des inégalités, nous obtenons l'encadrement : $\frac{1}{n+1}+\sqrt{1+\frac{2}{n}} \le t_{n+1} \le \frac{1}{n+1}+\sqrt{1+\frac{3}{n}}$.

Compte tenu de l'encadrement admis :

- D'une part : $1 + \frac{1}{2} \times \frac{2}{n} \frac{1}{8} \times \frac{4}{n^2} = 1 + \frac{1}{n} \frac{1}{2n^2} \le \sqrt{1 + \frac{2}{n}}$
- D'autre part : $\sqrt{1 + \frac{3}{n}} \le 1 + \frac{1}{2} \times \frac{3}{n} = 1 + \frac{3}{2n}$

De sorte que : $1 + \left(\frac{1}{n+1} + \frac{1}{n} - \frac{1}{2n^2}\right) \le t_{n+1} \le 1 + \left(\frac{1}{n+1} + \frac{3}{2n}\right)$

- D'une part : $\left(\frac{1}{n+1} + \frac{1}{n} \frac{1}{2n^2}\right) \frac{2}{n+1} = \frac{n-1}{2n^2(n+1)}$, ce qui est ≥ 0 pour tout $n \geq 1$.
- D'autre part : $\left(\frac{1}{n+1} + \frac{3}{2n}\right) \frac{3}{n+1} = \frac{3}{2n} \frac{2}{n+1} = -\frac{n-3}{2n(n+1)}$ ce qui est ≤ 0 pour tout $n \geq 3$.

En conséquence nous obtenons pour $n \ge 3$ les deux inégalités simultanément :

$$1 + \frac{2}{n+1} \le 1 + \left(\frac{1}{n+1} + \frac{1}{n} - \frac{1}{2n^2}\right) \le t_{n+1} \le 1 + \left(\frac{1}{n+1} + \frac{3}{2n}\right) \le 1 + \frac{3}{n+1}$$

Lorsque $n \ge 3$, si \wp_n est vérifiée, alors \wp_{n+1} l'est aussi, la propriété \wp_n est héréditaire à partir du rang 3.

Etant initialisée aux rangs 1, 2 et 3 et héréditaire à partir du rang 3, cette propriété \wp_n est vérifiée pour tout entier $n \ge 1$.

Pour tout entier strictement positif $n: 1 + \frac{2}{n} \le t_n \le 1 + \frac{3}{n}$

7. Un algorithme pour avoir une petite idée de ce qu'il se passe dans cette question.

L'inégalité $1+\frac{2}{n} \leq t_n$ déjà obtenue implique que $2 \leq n(t_n-1)$, c'est-à-dire que $2 \leq s_n$ pour tout $n \geq 1$.

Il reste à démontrer que $n(t_n-1)=s_n\leq 2+\frac{6}{n}$, inégalité équivalente à : $t_n\leq 1+\frac{2}{n}+\frac{6}{n^2}$.

Montrons par récurrence sur n que la propriété \wp_n : « $t_n \leq 1 + \frac{2}{n} + \frac{6}{n^2}$ » est vérifiée pour tout entier strictement positif n.

Initialisation : En consultant les résultats affichés par l'algorithme précédent, \wp_k est vérifiée pour tout entier n allant de 1 à 10.

Hérédité : Supposons que la propriété \wp_n : « $t_n \le 1 + \frac{2}{n} + \frac{6}{n^2}$ » soit vérifiée pour un certain entier strictement positif n.

Compte tenu de la relation de récurrence $t_{n+1}=\frac{1}{n+1}+\sqrt{t_n}$ et du fait que la fonction racine carrée conserve le sens des inégalités, nous obtenons l'encadrement : $t_{n+1}\leq \frac{1}{n+1}+\sqrt{1+\frac{2}{n}+\frac{6}{n^2}}$.

Compte tenu de la majoration admise sur la fonction racine carrée :

$$\sqrt{1 + \frac{2}{n} + \frac{6}{n^2}} \le 1 + \frac{1}{2} \times \left(\frac{2}{n} + \frac{6}{n^2}\right) = 1 + \frac{n+3}{n^2} \text{ de sorte que}: \ t_{n+1} \le 1 + \frac{1}{n+1} + \frac{n+3}{n^2}$$

Comparons le nombre $\frac{1}{n+1} + \frac{n+3}{n^2}$ avec le nombre $\frac{2}{n+1} + \frac{6}{(n+1)^2}$ en étudiant le signe de la différence $\left(\frac{1}{n+1} + \frac{n+3}{n^2}\right) - \left(\frac{2}{n+1} + \frac{6}{(n+1)^2}\right)$

La copie d'écran ci-contre montre que cette différence est égale à $\frac{2n^2-7n-3}{n^2.(n+1)^2}$ et qu'elle est négative pour tout entier $n \geq 4$.

Lorsque $n \geq 4$, nous obtenons : $t_{n+1} \leq 1 + \frac{2}{n+1} + \frac{6}{(n+1)^2}$ $t_{n+1} \leq 1 + \frac{2}{n+1} + \frac{6}{(n+1)^2}$ Define $x(n) = \frac{1}{n+1} + \frac{n+3}{n^2}$ $x(n) = \frac{1}{n+1} + \frac{n+3}{n^2}$ $x(n) = \frac{1}{n+1} + \frac{6}{(n+1)^2}$ $x(n) = \frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1}$ $x(n) = \frac{1}{n+1} + \frac{1$

Lorsque $n \geq 4$, si \mathscr{D}_n est vérifiée, alors \mathscr{D}_{n+1} l'est aussi, la propriété \mathscr{D}_n est héréditaire à partir du rang 4. Etant initialisée aux rangs 1, 2, 3 et 4 et héréditaire à partir du rang 4, cette propriété \mathscr{D}_n est vérifiée pour tout entier $n \geq 1$. Pour tout entier strictement positif n: $t_n \leq 1 + \frac{2}{n} + \frac{6}{n^2}$.

Il est équivalent de dire que $s_n \le 2 + \frac{6}{n}$ et finalement $2 \le s_n \le 2 + \frac{6}{n}$ pour tout entier strictement positif n.

- 8. $\lim_{n\to\infty} \left(\frac{t_n-1-\frac{2}{n}}{\frac{1}{n}}\right) = \lim_{n\to\infty} (n(t_n-1)-2) = \lim_{n\to\infty} (s_n-2) = 2$ d'après le théorème des gendarmes appliqué à la suite (s_n) minorée par 2 et majorée par une suite convergeant vers 2.
- 9. Traitée en cours de route.

10. Soit α un réel positif et (u_n) sa suite associée. Considérons la propriété \wp_n : « $1+\frac{2}{n} \le u_n \le 1+\frac{2}{n}+\frac{6}{n^2}$ ».

Hérédité. Par rapport à ce que nous avons vu à la **question 8**, rien ne change, cette propriété est héréditaire à partir du rang 4.

Cette propriété peut-elle être initialisée ?

```
>>> def suitecg(a,m):
                                                                     for n in range(1,m+1):
Cas de l'inégalité 1 + \frac{2}{n} \le u_n
                                                                                a=sqrt(a)+1/n
                                                                                 print(n,a)
L'algorithme « suitecg » est ici appliqué pour
\alpha=0 ,il montre que cette inégalité est
                                                         >>> suitecq(0,5)
                                                          1 1.0
initialisée au rang 5. Elle est donc initialisée à ce
                                                         3 1.5580782047249222
rang pour tout \alpha \geq 0
                                                         4 1.4982300287707078
                                                         5 1.4240220703772901
Cas de l'inégalité : u_n \leq 1 + \frac{2}{n} + \frac{6}{n^2}
                                                                          >>> suitecg(400,4)
                                                                            5.08257569495584
                                                                            2.587790184762484
                                                                            1.8586609912478402
                                                                          >>> suitecg(500,4)
L'algorithme ci-contre montre que cette inégalité est initialisée
                                                                          1 23.360679774997898
2 5.333288712150134
                                                                            2.6427247493020802
au rang 4 lorsque \alpha \le 400 mais non pas lorsque \alpha = 500.
                                                                          4 1.8756459483239516
                                                                          >>> 1+2/5+6/25
                                                                          >>> suitecg(5000,5)
                                                                            71.71067811865476
8.96821575768206
                                                                           3.3280312743086933
2.074289251820745
Elle est initialisée au rang 5 lorsque \alpha \le 4000 mais non pas
lorsque \alpha = 5000.
                                                                              suitecg(4000,5)
                                                                            64.24555320336759
8.515332382588236
                                                                            3.2514375779737192
                                                                            2.053174306043018
                                                                            1.6328901932957103
```

Etant donné un entier $n \ge 2$, on peut se demander quelle valeur initiale a(n) conviendrait pour que l'on ait exactement : $u_n = 1 + \frac{2}{n} + \frac{6}{n^2}$

- De la relation $u_n = \sqrt{u_{n-1}} + \frac{1}{n}$, on déduit que : $u_{n-1} = \left(u_n \frac{1}{n}\right)^2$
- De la relation $u_{n-1} = \sqrt{u_{n-2}} + \frac{1}{n-1}$, on déduit que : $u_{n-2} = \left(u_{n-1} \frac{1}{n-1}\right)^2$
- ...
- De la relation $u_2 = \sqrt{u_1} + \frac{1}{2}$, on déduit que : $u_1 = \left(u_2 \frac{1}{2}\right)^2$
- De la relation $u_1 = \sqrt{u_0} + 1$, on déduit que : $a(n) = u_0 = (u_1 1)^2$

```
>>> from math import *
L'algorithme
                       Python
                                   >>> def initial(m):
                                            for n in range(2,m+1):
« initial » nous permet de
                                                      u=1+2/n+6/(n**2)
                                                      for k in range (1, n+1):
                                                               u=(u-1/(n+1-k))**2
proposer
              les
                     premiers
                                                      print("initialisation au rang", n, "si alpha < ou = à", u)</pre>
seuils.
                                   >>> initial(12)
Nous retrouvons le fait que
                                   initialisation au rang 2 si alpha < ou = à 64.0
                                   initialisation au rang 3 si alpha < ou = à 126.56249999999999
                                   initialisation au rang 4 si alpha < ou = à 495.8222787014591
le seuil d'initialisation est 5
                                   initialisation au rang 5 si alpha < ou = à 4964.042618666292
                                   initialisation au rang 6 si alpha < ou = à 209456.92872741207
lorsque la valeur initiale est
                                   initialisation au rang
                                                              7 \text{ si alpha } < \text{ou} = \text{à } 90690635.25852086
                                   initialisation au rang 8 si alpha < ou = à 1870663656422.476
4000 mais 6 lorsque la
                                   initialisation au rang 9 si alpha < ou = à 2.5792493338601136e+19
                                   initialisation au rang 10 si alpha < ou = à 2.3006509816204384e+31
                                   initialisation au rang 11 si alpha < ou = à 3.84821897462082e+51
valeur initiale est 5000
                                   initialisation au rang 12 si alpha < ou = à 1.4439001644272566e+86
                                                                                                 "initial" enregistr. effectué
Ici, une mouture
                         TI-Nspire
                                      est
                                             seuil(12)
                                                                                                 Define initial(n)=
                                                                seuil pour 2. égal à 64.
                                                                                                 Prgm
concordante
                                résultats
                 avec
                         les
                                                                seuil pour 3. égal à 126.5625
                                                                                                 Local v
                                                                seuil pour 4. égal à 495.822278702
obtenus.
                                                                                                 Define u=1+
                                                                seuil pour 5. égal à 4964.04261867
                                                                                                 For k, 1, n
                                                                seuil pour 6. égal à 209456.928727
                                                                seuil pour 7. égal à 90690635.2585
                                                                                                  Define v
Si cet algorithme est correct, nous
                                                                seuil pour 8. égal à 1.87066365643E12
                                                                seuil pour 9. égal à 2.5792493339E19
pouvons dire que pour :
                                                                                                 EndFor
                                                                seuil pour 10. égal à 2.30065098167\mathtt{E}31
                                                                                                 Return u
                                                                seuil pour 11. égal à 3.84821897487E51
           \alpha < 1.44 \times 10^{86}
                                                                                                 EndProm
                                                                seuil pour 12. égal à 1.443900165E86
                                                                                                 "seuil" enregistr. effectué
l'inégalité qui initialise le processus
                                                                                                Define seuil(m)=
                                                                                                 Prgm
est vérifiée au plus tard au rang 12 et
                                                                                                 For n, 2, m
                                                                                                  initial(n)
la propriété \wp_n est dès lors vérifiée.
                                                                                                  Disp "seuil pour",n,"égal à",u
                                                                                                 EndFor
```

Comme dans la **question 8,** il en résulte que, lorsque $\alpha \le 1{,}44 \times 10^{86}$, il est assuré que : $\lim_{n \to \infty} \left(\frac{u_n - 1 - \frac{2}{n}}{\frac{1}{n}} \right) = 2$

EndPrgm

Pour autant, la question n'est pas résolue. Il faudrait justifier rigoureusement que la suite des seuils diverge vers plus l'infini. Voilà qui restera ouvert ...

Une « feuille de route » possible (?) pour résoudre cette question

Désignons par u la suite associée au seuil a(n) et par v la suite associée au seuil a(n-1).

Par définition de ces suites les termes de rangs n de l'une et n-1 de l'autre sont définis par :

$$\begin{cases} u_n = 1 + \frac{2}{n} + \frac{6}{n^2} \\ v_{n-1} = 1 + \frac{2}{n-1} + \frac{6}{(n-1)^2} \end{cases}. \text{ Leurs termes de rang } n-1 \text{ sont } : \begin{cases} u_{n-1} = \left(u_n - \frac{1}{n}\right)^2 = \left(1 + \frac{1}{n} + \frac{6}{n^2}\right)^2 \\ v_{n-1} = 1 + \frac{2}{n-1} + \frac{6}{(n-1)^2} \end{cases}$$

Pour tout entier k tel que $0 \le k \le n-1$, considérer le quotient : $q_k = \frac{u_k}{v_k}$

Au rang $q_{n-1} = \frac{u_{n-1}}{v_{n-1}} = \frac{\left(1 + \frac{1}{n} + \frac{6}{n^2}\right)^2}{1 + \frac{2}{n-1} + \frac{6}{(n-1)^2}}$ compte tenu des propriétés des termes de ce rang. Et au rang

zéro le quotient $q_0=\frac{u_0}{v_0}$ représente le quotient des deux seuils $\frac{a(n)}{a(n-1)}$

On peut rappeler pour éventuel usage que si x, y et z sont trois réels tels que x > y > z > 0, alors :

$$\frac{x-z}{y-z} > \frac{x}{y} \operatorname{car} \frac{x-z}{y-z} - \frac{x}{y} = \frac{z(x-y)}{y(y-z)}$$

1. Justifier que $q_{n-1} \ge 1 + \frac{1}{n^2}$ (pour $n \ge 3$ semble-t-il).

2. Vérifier que
$$q_{n-2} = \frac{u_{n-2}}{v_{n-2}} = \left(\frac{u_{n-1} - \frac{1}{n-1}}{v_{n-1} - \frac{1}{n-1}}\right)^2 \ge q_{n-1}^2$$

3. Montrer que, plus généralement, pour $1 \le j \le n$, $q_{n-j} \ge \left(1 + \frac{1}{n^2}\right)^{2^{j-1}}$ et qu'en particulier le quotient des seuils en jeu vérifie : $\frac{a(n)}{a(n-1)} = \frac{u_0}{v_0} \ge \left(1 + \frac{1}{n^2}\right)^{2^{n-1}}$

4. Conclure à propos de la divergence vers plus l'infini de la suite des seuils $(a(n))_{n\geq 2}$

Exercice 2: Les bonbons cachés

N'étant pas du tout parvenu à entrer dans la logique de la démarche de la partie 3 de l'énoncé, je ne suis pas en mesure d'en proposer une solution un tant soit peu consistante.

En ce qui concerne les parties 1 et 2, de nombreuses sources traitent du « paradoxe de Monty-Hall ». Voir aussi sur la page « Concours Général » un document dédié à propos de cet exercice.

Exercice 3 : Intersections et réunions

Partie 1: Quelques cas particuliers

1.a. Par définition, $\operatorname{ent}(x)$ est l'unique entier tel que : $\operatorname{ent}(x) \le x < \operatorname{ent}(x) + 1$ (1)

En retranchant 1 à chaque membre de cette double inégalité : $ent(x) - 1 \le x - 1 < ent(x)$ (1').

Des deux doubles inégalités, on déduit : $x - 1 < \text{ent}(x) \le x$.

1.b. Sous les hypothèses de cette question : $\begin{cases} n \in \mathbb{Z} \\ 0 \le y < 1 \\ x = n + y \end{cases} \implies \begin{cases} n \in \mathbb{Z} \\ n \le x < n + 1 \\ y = x - n \end{cases}$

Par définition des parties entière et fractionnaire et compte tenu de l'unicité de la partie entière :

$$\begin{cases}
n = \text{ent}(x) \\
y = \text{frac}(x)
\end{cases}$$

2.a. $\mathcal{E}(1) = \left\{ \operatorname{ent}(\frac{1}{1}) = 1 \text{ ; } \operatorname{ent}(\frac{2}{1}) = 2 \text{ ; } \operatorname{ent}(\frac{3}{1}) = 3 \text{ ; } \ldots \right\}$ est par construction inclus dans \mathbb{N}^* . Réciproquement, tout entier strictement positif k appartient à $\mathcal{E}(1)$ puisque $k = \operatorname{ent}(\frac{k}{1})$, ce qui justifie que $\mathbb{N}^* \subset \mathcal{E}(1)$.

$$\mathcal{E}(1) = \mathbb{N}^*$$

2.b. Supposons que x > 1 et soit n un entier strictement positif. $\mathcal{E}(x)$ est par construction inclus dans \mathbb{N} . Réciproquement, pour tout entier naturel n, l'intervalle [nx; (n+1)x[a pour longueur x, c'est-à-dire une longueur strictement plus grande que 1. Cet intervalle contient donc au moins un entier :

L'ensemble des entiers K tels que $nx \le K < (n+1)x$ est non vide. Soit alors K un tel entier. Il vérifie la double inégalité : $n \le \frac{K}{r} < n+1$ et de ce fait : $\operatorname{ent}(\frac{K}{r}) = n$

Quel que soit $n \in \mathbb{N}$, $n \in \mathcal{E}(x)$ car il existe toujours au moins un entier K tel que : $\operatorname{ent}(\frac{K}{x}) = n$, ce qui justifie l'inclusion $\mathbb{N} \subset \mathcal{E}(x)$ comme dans la question précédente. On peut déduire de **2.a** et **2.b** que :

Si
$$x > 1$$
, alors $\mathcal{E}(x) = \mathbb{N}$

3.a. Si le plus grand des deux réels α ou β est exactement égal à 1, l'ensemble qui lui est associé est égal à \mathbb{N}^* , l'un des deux ensembles $\mathcal{E}(\alpha)$ ou $\mathcal{E}(\beta)$ est déjà égal à \mathbb{N}^* et contient l'autre ensemble.

$$\mathcal{E}(\alpha) \cup \mathcal{E}(\beta) = \mathbb{N}^*$$
 et $\mathcal{E}(\alpha) \cap \mathcal{E}(\beta) \neq \emptyset$. La propriété P_{\cup} est vérifiée, P_{\cap} ne l'est pas.

3.b. Si $\max(\alpha, \beta) > 1$, l'ensemble qui lui est associé est égal à \mathbb{N} et contient l'autre ensemble.

$$\mathcal{E}(\alpha) \cup \mathcal{E}(\beta) = \mathbb{N} \neq \mathbb{N}^*$$
 et $\mathcal{E}(\alpha) \cap \mathcal{E}(\beta) \neq \emptyset$. Les propriétés P_{\cup} et P_{\cap} ne sont pas vérifiées.

4.a. Soit x un réel quelconque, n un entier strictement positif et k un entier naturel. Par définition de la partie fractionnaire d'un nombre, si on considère le réel $kx:0 \le \operatorname{frac}(kx) < 1$.

Donc, quel que soit $n \in \mathbb{N}^*$: $0 \le n \times \operatorname{frac}(kx) < n$

$$\begin{cases} 0 \le n \times \operatorname{frac}(kx) \Rightarrow \operatorname{ent}(n \times \operatorname{frac}(kx)) \ge 0 \\ n \times \operatorname{frac}(kx) < n \Rightarrow \operatorname{ent}(n \times \operatorname{frac}(kx)) \le n - 1 \end{cases}$$

Les deux inégalités impliquent : $\operatorname{ent}(n \times \operatorname{frac}(kx)) \in \{0; 1; ...; n-1\}.$

4.b. Considérons la liste $\{\operatorname{ent}(n \times \operatorname{frac}(jx)); j = 0, 1, ..., n\}$ obtenue avec les parties entières des (n+1) premiers multiples entières de x.

Elle est composée de (n+1) termes, tous appartenant, d'après la question précédente, au même ensemble de n nombres, l'ensemble $\{0;1;...;n-1\}$.

Vu que la liste a une unité de plus que le cardinal de l'ensemble dans lequel elle prend ses valeurs, il y a au moins deux termes de la liste $\{\operatorname{ent}(n \times \operatorname{frac}(jx)); j=0, 1, ..., n\}$ qui sont égaux.

Il existe deux entiers distincts $0 \le k < \ell \le n$ tels que $\operatorname{ent}(n \times \operatorname{frac}(\ell x)) = \operatorname{ent}(n \times \operatorname{frac}(kx))$.

4.c. Désignons par E le nombre : $E = \text{ent}(n \times \text{frac}(\ell x)) = \text{ent}(n \times \text{frac}(kx))$. Compte tenu de la définition de la partie entière :

$$\begin{cases} E \le n \times \operatorname{frac}(\ell x) < E + 1 \\ E \le n \times \operatorname{frac}(kx) < E + 1 \end{cases} \Rightarrow -1 < n \times \operatorname{frac}(\ell x) - n \times \operatorname{frac}(kx) < 1$$

Nous obtenons la double inégalité : $-\frac{1}{n} < \operatorname{frac}(\ell x) - \operatorname{frac}(kx) < \frac{1}{n}$.

Suivant le signe de $\operatorname{frac}(\ell x) - \operatorname{frac}(kx) < \frac{1}{n}$, ce nombre a pour partie entière 0 ou -1, ce qui influe sur l'expression de sa partie fractionnaire :

- Si $0 \le \operatorname{frac}(\ell x) \operatorname{frac}(kx) < \frac{1}{n}$, alors $\operatorname{frac}(mx) = \operatorname{frac}(\ell x kx) = \operatorname{frac}(\ell x) \operatorname{frac}(kx)$ et dans ce cas : $\operatorname{frac}(mx) \in \left[0; \frac{1}{n}\right[$.
- Si $-\frac{1}{n} < \operatorname{frac}(\ell x) \operatorname{frac}(kx) < 0$, alors $\operatorname{frac}(mx) = \operatorname{frac}(\ell x kx) = 1 + \operatorname{frac}(\ell x) \operatorname{frac}(kx)$ et dans ce cas : $\operatorname{frac}(mx) \in \left[1 \frac{1}{n}; 1\right[$.

4.d. L'hypothèse faite dans cette question, $\operatorname{frac}(mx) \in \left]1 - \frac{1}{n}\right.$; $1\left[$, équivaut à $0 < 1 - \operatorname{frac}(mx) < \frac{1}{n}\right]$. Il en résulte que $\frac{1}{1 - \operatorname{frac}(mx)} > n$ et donc que $u = \operatorname{ent}\left(\frac{1}{1 - \operatorname{frac}(mx)}\right) \ge n$

Du fait que $u = \operatorname{ent}\left(\frac{1}{1 - \operatorname{frac}(mx)}\right)$, nous avons : $u \leq \frac{1}{1 - \operatorname{frac}(mx)} < u + 1$, ce qui équivaut à l'inégalité :

$$1 - \frac{1}{u+1} > \operatorname{frac}(mx) \ge 1 - \frac{1}{u} = \frac{u-1}{u}$$

En multipliant par l'entier strictement positif u nous obtenons : $u-\frac{u}{u+1}>u \times \operatorname{frac}(mx)\geq u-1$ Remarquons au passage que $u-\frac{u}{u+1}=u-1+\frac{1}{u+1}$

Décomposons : mx = ent(mx) + frac(mx) en somme de ses parties entière et fractionnaire.

En multipliant par $u: umx = u \times ent(mx) + u \times frac(mx)$. Nous obtenons l'encadrement :

$$u \times \operatorname{ent}(mx) + u - 1 + \frac{1}{u+1} > umx \ge u \times \operatorname{ent}(mx) + u - 1$$

Cette double inégalité montre que :

- $\operatorname{ent}(umx) = u \times \operatorname{ent}(mx) + u 1$.
- $0 \le \operatorname{frac}(umx) < \frac{1}{u+1}$, donc a fortior $0 \le \operatorname{frac}(umx) < \frac{1}{n}$, puisque $u \ge n$

4.e. En synthèse des questions **4.c** et **4.d** ou bien $\operatorname{frac}(mx) \in \left[0; \frac{1}{n}\right[$, ou bien $\operatorname{frac}(umx) \in \left[0; \frac{1}{n}\right[$. Quel que soit le cas de figure, on a obtenu un entier v tel que $\operatorname{frac}(vx) \in \left[0; \frac{1}{n}\right[$. Il s'agit soit de m lui-même soit de l'entier um construit au **4.d.**

5. Dans cette question $\alpha = \frac{p}{q}$ est un rationnel et β un réel tous deux strictement compris entre 0 et 1. Leurs inverses sont rus deux strictement supérieurs à 1.

5.a. Soit $\varepsilon > 0$. Avec les notations de cette question, choisissons un entier n tel que $n > \frac{q}{\varepsilon}$ (ce qui permettra d'avoir l'inégalité $\frac{1}{n} < \frac{\varepsilon}{a}$)

Appliquons la conclusion de la **question 4.e** avec le nombre $x = \frac{1}{\beta}$.

Il existe un entier strictement positif v tel que frac $(\frac{v}{\beta}) \in \left[0; \frac{1}{n}\right]$.

Si on note k la partie entière de ce nombre : $k \le \frac{v}{\beta} < k + \frac{1}{n} < k + \frac{\varepsilon}{a}$

En multipliant par $q: kq \leq \frac{vq}{\beta} < kq + \varepsilon$. Nous obtenons l'inégalité voulue en posant $\ell = vq$.

$$\forall \varepsilon > 0, \qquad \exists \ (k, \ell) \in \mathbb{N}^* \times \mathbb{N}^*, \qquad kq \leq \frac{\ell}{\beta} < kq + \varepsilon$$

En particulier, en prenant $\varepsilon < 1$, on en déduit qu'il existe des multiples de q qui appartiennent à $\mathcal{E}(\beta)$.

5.b. Considérons l'ensemble $\mathcal{E}(\alpha)$ lorsque $\alpha = \frac{p}{q}$ avec p et q premiers entre eux et p < q

 $\mathcal{E}\left(\frac{p}{q}\right) = \left\{\operatorname{ent}\left(\frac{kq}{p}\right), k \in \mathbb{N}^*\right\}$. Lorsque k est un multiple de p, $\frac{kq}{p}$ est un entier multiple de q. L'ensemble $\mathcal{E}\left(\frac{p}{q}\right)$ contient l'ensemble des multiples de q.

La **question 4.b** a montré que certains d'entre eux appartenaient à $\mathcal{E}(\beta)$.

La propriété P_{\cap} n'est pas satisfaite.

D'autre part, puisque $\mathcal{E}\left(\frac{p}{q}\right)$ contient l'ensemble des multiples de p, en revanche il ne contient aucun entier de la forme k=mq-1. En effet, l'écart entre $\frac{(mp)\times q}{p}$ et $\frac{(mp-1)\times q}{p}$ est égal à $\frac{q}{p}$. Cet écart est strictement supérieur à 1, donc quel que soit l'entier m, ent $\left(\frac{(mp-1)\times q}{p}\right) < mq-1$.

A propos de β , appliquons le résultat **5.a** avec un nombre tel que $0<\varepsilon<\frac{1}{\beta}-1$

$$\exists (k,\ell) \in \mathbb{N}^* \times \mathbb{N}^*, \ kq \leq \frac{\ell}{\beta} < kq + \left(\frac{1}{\beta} - 1\right). \ \text{Alors} : kq - \frac{1}{\beta} \leq \frac{\ell - 1}{\beta} < kq - 1, \text{ et donc} \begin{cases} & \text{ent}\left(\frac{\ell}{\beta}\right) = kq \\ & \text{ent}\left(\frac{\ell - 1}{\beta}\right) < kq - 1 \end{cases}$$

On en déduit qu'il existe des entiers de la forme kq-1 qui n'appartiennent pas à $\mathcal{E}(\beta)$.

Ces éléments ne sont ni dans $\mathcal{E}\left(\frac{p}{a}\right)$ ni dans $\mathcal{E}(\beta)$.

 $\mathcal{E}\left(\frac{p}{q}\right) \cup \mathcal{E}(\beta) \neq \mathbb{N}^*$: la propriété P_{\cup} n'est pas non plus vérifiée.

Partie 2: Partition

- **6.a.** Par définition de la partie entière : $\operatorname{ent}(n\alpha) < n\alpha < \operatorname{ent}(n\alpha) + 1$ avec des inégalités strictes car $n\alpha$ est un irrationnel qui ne peut pas être égal à sa partie entière. En conséquence : $\frac{\operatorname{ent}(n\alpha)}{\alpha} < n < \frac{\operatorname{ent}(n\alpha) + 1}{\alpha}$.
 - D'une part $\operatorname{ent}\left(\frac{\operatorname{ent}(n\alpha)}{\alpha}\right) \leq n-1$ en raison de l'inégalité stricte. L'ensemble $\mathcal{E}(\alpha)$ compte au moins $\operatorname{ent}(n\alpha)$ éléments compris entre 1 et n-1.
 - D'autre part ent $\left(\frac{\operatorname{ent}(n\alpha)+1}{\alpha}\right) \geq n$. L'ensemble $\mathcal{E}(\alpha)$ n'en compte pas d'autre.

L'ensemble $\mathcal{E}(\alpha)$ compte exactement ent $(n\alpha)$ éléments compris entre 1 et n-1.

Remarquons pour la suite de la question une propriété de la partie entière d'une somme de deux nombres ; elle est égale à la somme des parties entières éventuellement augmentée ou diminuée d'une unité :

$$\operatorname{ent}(n(\alpha+\beta)) = \operatorname{ent}(n\alpha+n\beta) = \begin{cases} \operatorname{ent}(n\alpha) + \operatorname{ent}(n\beta) \\ \operatorname{ou \ bien} \\ \operatorname{ent}(n\alpha) + \operatorname{ent}(n\beta) + 1 \\ \operatorname{ou \ bien} \\ \operatorname{ent}(n\alpha) + \operatorname{ent}(n\beta) - 1 \end{cases}$$

6.b. Supposons que $\alpha + \beta > 1$. On peut choisir l'entier n de façon que $n \times (\alpha + \beta) > n + 1$.

La somme des cardinaux de $\mathcal{E}(\alpha)$ et de $\mathcal{E}(\beta)$ est égale à $\operatorname{ent}(n\alpha) + \operatorname{ent}(n\beta) \ge \operatorname{ent}(n(\alpha+\beta)) - 1 \ge n$).

Ces ensembles $\mathcal{E}(\alpha)$ et $\mathcal{E}(\beta)$ étant tous deux inclus dans $\{1;2;...;n-1\}$ qui contient exactement (n-1) éléments, ils ont en commun au moins un élément, ils ne sont pas disjoints.

La propriété P_{Ω} n'est pas satisfaite.

6.c. Supposons que $\alpha + \beta < 1$. On peut choisir l'entier n de façon que $n \times (\alpha + \beta) < n - 2$.

 $\operatorname{ent}(n\alpha+n\beta)=\operatorname{ent}(n\alpha)+\operatorname{ent}(n\beta)\leq\operatorname{ent}(n(\alpha+\beta))< n-2+1=n-1$. La somme des cardinaux de $\mathcal{E}(\alpha)$ et de $\mathcal{E}(\beta)$ est strictement inférieure au cardinal de $\{1\,;2\,;\ldots;n-1\}$. La réunion de ces ensembles ne peut pas être égale à $\{1\,;2\,;\ldots;n-1\}$.

La propriété P_{U} n'est pas satisfaite.

7.a. Supposons que α et β soient deux irrationnels de somme 1.

Auquel cas, puisque leur somme est égale à 1, pour tout entier n > 0 : $\operatorname{ent}(n(\alpha + \beta)) = n$

Des inégalités toutes deux nécessairement strictes $\operatorname{ent}(n\alpha) < n\alpha$ et $\operatorname{ent}(n\beta) < n\beta$, on déduit que $\operatorname{ent}(n\alpha) + \operatorname{ent}(n\beta) < n(\alpha + \beta) = n$

Des trois possibilités envisagées en « remarque », il n'en reste qu'une : $ent(n\alpha) + ent(n\beta) + 1 = n$.

Nous obtenons :
$$ent(n\alpha) + ent(n\beta) = n - 1$$
.

7.b. Soit *n* un entier strictement positif.

```
Nous disposons des relations : \begin{cases} \operatorname{ent}(n\alpha) + \operatorname{ent}(n\beta) = n - 1 \\ \operatorname{ent}((n+1)\alpha) + \operatorname{ent}((n+1)\beta) = n \end{cases} d'après la question précédente.
```

En passant à l'entier n+1, une et une seule des deux parties entières en jeu a augmenté d'une unité.

```
1^{er} cas: ent((n+1)\alpha) = ent(n\alpha) + 1; ent((n+1)\beta) = ent(n\beta).
```

L'ensemble $\mathcal{E}(\alpha)$ compte $\mathrm{ent}(n\alpha)$ éléments compris entre 1 et n-1, et un de plus compris entre 1 et n: c'est donc que $n \in \mathcal{E}(\alpha)$. En revanche $\mathcal{E}(\beta)$ compte autant d'éléments compris entre 1 et n-1 que d'éléments compris entre 1 et n: c'est donc que $n \notin \mathcal{E}(\beta)$.

```
2^{\grave{e}me} cas : \operatorname{ent}((n+1)\alpha) = \operatorname{ent}(n\alpha); \operatorname{ent}((n+1)\beta) = \operatorname{ent}(n\beta) + 1. Il s'agit du cas « symétrique » du précédent. n \notin \mathcal{E}(\alpha) et n \in \mathcal{E}(\beta).
```

8. La **question 7** nous montre que, si α et β sont deux irrationnels de somme 1, alors tout entier n strictement positif appartient à un et un seul des deux ensembles $\mathcal{E}(\alpha)$ ou $\mathcal{E}(\beta)$.

Cette question nous montre que:

Si α et β sont deux irrationnels de somme 1, alors P_{Ω} et P_{U} sont simultanément vérifiées.

Réciproquement, si P_{\cap} et P_{\cup} sont simultanément vérifiées, alors en vertu de la **question 6** la somme $\alpha + \beta$ ne peut être ni < 1, ni > 1. Elle est donc exactement égale à 1.

D'autre part, la **question 5** a montré que, si au moins l'un des deux nombres α ou β était rationnel, alors P_{\cap} n'était pas vérifiée. Nécessairement, ce sont deux irrationnels.

Si P_{\cap} et P_{\cup} sont simultanément vérifiées, alors α et β sont deux irrationnels de somme 1.

Partie 3: Intersection vide

L'ensemble Ω est l'ensemble des points M dont les coordonnées sont de la forme $(k\alpha + m; k\beta + n)$ avec k, m, n entiers relatifs.

9. Soit α et β deux irrationnels tels qu'il existe des entiers u et v strictement positifs vérifiant $\alpha u + \beta v = 1$.

Supposons que P_{\cap} ne soit pas vérifiée. Alors il existe deux entiers k et ℓ strictement positifs tels que : $\operatorname{ent}\left(\frac{k}{\alpha}\right) = \operatorname{ent}\left(\frac{\ell}{\beta}\right)$. Dans ce cas, $\operatorname{ent}\left(\frac{ku}{u\alpha}\right) = \operatorname{ent}\left(\frac{\ell v}{v\beta}\right)$, ce qui prouverait que $\mathcal{E}(u\alpha) \cap \mathcal{E}(v\beta) \neq \emptyset$

Or, les deux nombres αu ; βv sont irrationnels et de somme 1. Le théorème A serait mis en défaut à leur propos. L'hypothèse est à rejeter.

Si α et β sont deux irrationnels tels qu'il existe des entiers strictement positifs u et v vérifiant $\alpha u + \beta v = 1$, alors P_{Ω} est vérifiée.

10. La **question 5** a montré que, si au moins l'un des deux nombres α ou β était rationnel, alors P_{\cap} n'était pas vérifiée. Nécessairement, ce sont deux irrationnels.

La **question 2** a montré que, si $\alpha \ge 1$ ou $\beta \ge 1$, alors $\mathcal{E}(\alpha) = \mathbb{N}^*$ ou, respectivement, $\mathcal{E}(\beta) = \mathbb{N}^*$ et dans ce cas P_{\cap} ne peut pas être vérifiée. Nécessairement, $\max(\alpha, \beta) < 1$.

11. Les résultats de cette question sont liés aux propriétés algébriques de l'ensemble \mathbb{Z} qui est un « anneau », un groupe pour l'addition et un ensemble stable par multiplication.

11.a. Soit $A(k_A\alpha+m_A;k_A\beta+n_A)$ et $B(k_B\alpha+m_B;k_B\beta+n_B)$ deux points de Ω (tous les coefficients indexés sont des entiers relatifs).

Le vecteur \overrightarrow{AB} a pour coordonnées $\left((k_B-k_A)\alpha+(m_B-m_A)\,;(k_B-k_A)\beta+(n_B-n_A)\right)$

L'image de $M(k\alpha+m;k\beta+n)$ par la translation $T_{\overrightarrow{AB}}$ est le point $M'\big((k+k_B-k_A)\alpha+(m+m_B-m_A);(k+k_B-k_A)\beta+(n+n_B-n_A)\big)$. Réciproquement, M est l'image par cette translation du point $M''\big((k-k_B+k_A)\alpha+(m-m_B+m_A);(k-k_B+k_A)\beta+(n-n_B+n_A)\big)$.

Or, en raison de la stabilité de l'ensemble \mathbb{Z} pour l'addition, les nombres k, m, n sont des entiers relatifs si et seulement si $(k+k_B-k_A)$, $(m+m_B-m_A)$, $(n+n_B-n_A)$ et $(k-k_B+k_A)$, $(m-m_B+m_A)$, $(n-n_B+n_A)$ sont des entiers relatifs :

L'image de Ω par $T_{\overrightarrow{AB}}$ est incluse dans Ω et l'image réciproque de Ω par $T_{\overrightarrow{AB}}$ (image par $T_{\overrightarrow{BA}}$) est incluse dans Ω :

L'ensemble Ω est globalement invariant par $T_{\overrightarrow{AB}}$.

11.b. L'image de $M(k\alpha+m;k\beta+n)$ par la symétrie centrale de centre O est $M_3(-k\alpha-m;-k\beta-n)$. En raison de la stabilité de l'ensemble $\mathbb Z$ pour la symétrisation (pour l'opération +), les nombres k, m, n sont des entiers relatifs si et seulement si leurs opposés sont des entiers relatifs. Un point appartient à Ω si et seulement si son symétrique par rapport à O appartient à Ω .

L'ensemble Ω est globalement invariant par la symétrie centrale de centre O.

L'image de $M(k\alpha+m;k\beta+n)$ par l'homothétie de centre O de rapport ℓ (entier relatif) est $M_4(k\ell\alpha+m\ell;k\ell\beta+n\ell)$. En raison de la stabilité de l'ensemble $\mathbb Z$ pour la multiplication, si les nombres k,m,n sont des entiers relatifs alors les nombres $k\ell,m\ell,n\ell$ sont des entiers relatifs. Si un point appartient à Ω alors son homothétique appartient à Ω .

L'image de Ω par une homothétie de centre O et de rapport un entier relatif est incluse dans Ω .

12. Considérons deux points de Ω : $M_1(k_1\alpha+m_1;k_1\beta+n_1)$ et $M_2(k_2\alpha+m_2;k_2\beta+n_2)$.

$$M_1 = M_2 \iff \begin{cases} k_1 \alpha + m_1 = k_2 \alpha + m_2 \\ k_1 \beta + n_1 = k_2 \beta + n_2 \end{cases} \text{ soit } : \begin{cases} (k_1 - k_2) \alpha = m_2 - m_1 \\ (k_1 - k_2) \beta = n_2 - n_1 \end{cases}$$

Or, par hypothèse α et β sont deux nombres irrationnels, tandis que k_1-k_2 , m_2-m_1 et n_2-n_1 sont des entiers relatifs. Ces relations ne peuvent être vérifiées que si : $k_1-k_2=m_2-m_1=n_2-n_1=0$.

Un point de Ω n'admet qu'un seul triplet (k, m, n) permettant de définir ses coordonnées.

L'unicité de ce triplet légitime la définition de l'application f.

13.a. D'après l'énoncé : $k \in \mathcal{E}(\alpha) \iff \exists n \in \mathbb{N}^*$, $k \leq \frac{n}{\alpha} < k+1$ soit :

 $k \in \mathcal{E}(\alpha) \iff \exists n \in \mathbb{N}^{*}, k\alpha < n < (k+1)\alpha$. Avec des inégalités strictes, le cas d'égalité $k\alpha = n$ est impossible vu que α est un nombre irrationnel.

Cette double inégalité est équivalente à : $\exists n \in \mathbb{N}^*, n < (k+1)\alpha < n+\alpha$

Or $\alpha < 1$ et donc $n + \alpha < n + 1$.

En conséquence $\operatorname{ent} ((k+1)\alpha) = n$; le nombre $(k+1)\alpha - n$ représente la partie fractionnaire de $(k+1)\alpha$ et l'inégalité de droite signifie que $(k+1)\alpha - n < \alpha$.

$$k \in \mathcal{E}(\alpha) \iff \operatorname{frac}((k+1)\alpha) < \alpha$$

13.b. On ne perd pas de vue que d'après la question **10** : $\max(\alpha, \beta) < 1$

Supposons que le rectangle]0 ; $\alpha[\times]0$; $\beta[$ contienne un point $X(k\alpha+m;k\beta+n)$ de Ω tel que $f(X)\geq 1$, c'est-à-dire tel que $k\geq 1$. Cela signifie que : $\begin{cases} 0< k\alpha+m<\alpha\\ 0< k\beta+n<\beta \end{cases} \text{ avec } k\geq 1$

$$\text{Des inégalités} \begin{cases} 0 < k\alpha + m < \alpha \\ 0 < k\beta + n < \beta \end{cases} \text{ on déduit que} \begin{cases} 0 < \operatorname{frac}(k\alpha + m) < \alpha \\ 0 < \operatorname{frac}(k\beta + n) < \beta \end{cases}.$$

Mais puisque m et n sont des entiers, $\begin{cases} \operatorname{frac}(k\alpha+m) = \operatorname{frac}(k\alpha) \\ \operatorname{frac}(k\beta+n) = \operatorname{frac}(k\beta) \end{cases}$

En conséquence :
$$\begin{cases} \operatorname{frac}(k\alpha) < \alpha \\ \operatorname{frac}(k\beta) < \beta \end{cases}$$
 donc d'après **13.a,**
$$\begin{cases} k-1 \in \mathcal{E}(\alpha) \\ k-1 \in \mathcal{E}(\beta) \end{cases}$$

L'intersection $\mathcal{E}(\alpha) \cap \mathcal{E}(\beta)$ ne serait donc pas vide, ce qui serait contraire à l'hypothèse.

Le rectangle]0; $\alpha[\times]0$; $\beta[$ ne contient aucun point X de Ω tel que $f(X) \ge 1$.

Rappelons le théorème d'approximation de Dirichlet d'un nombre irrationnel :

Pour tout irrationnel x, il existe une infinité de rationnels $\frac{p}{q}$ où p et q sont des entiers tels que $\left|x-\frac{p}{q}\right|<\frac{1}{q^2}$.

13.c. Soit $\varepsilon > 0$. Appliquons le théorème de Dirichlet à α et β en choisissant un même dénominateur q entier strictement positif vérifiant $q > \frac{1}{\varepsilon}$:

Il existe deux entiers p et p' tels que : $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^2}$ et $\left|\beta-\frac{p'}{q}\right|<\frac{1}{q^2}$

Dans ce cas :
$$|q\alpha - p| < \frac{1}{a} < \varepsilon$$
 et $|q\beta - p'| < \frac{1}{a} < \varepsilon$.

En posant k=q; m=-p; n=-p', nous obtenons un point $Y(k\alpha+m;k\beta+n)$ de Ω avec $f(Y)\geq 1$ qui appartient au carré $]-\varepsilon$; $\varepsilon[\times]-\varepsilon$; $\varepsilon[$.

Contenant ce point, ce carré contient aussi son symétrique par rapport à O, de coordonnées opposées : le carré contient aussi des points de Ω avec $f(Y) \leq -1$.

Pour tout $\varepsilon > 0$, le carré $]-\varepsilon$; $\varepsilon[\times]-\varepsilon$; $\varepsilon[$ contient des points Y de Ω avec $f(Y) \ge 1$ et des points Y de Ω avec $f(Y) \le -1$.

Notons que ces points n'ont pas de coordonnées rationnelles puisque $f(Y) \neq 0$

De ce fait, le carré contient des points Y de Ω avec $f(Y) \geq n$ où n est un entier strictement positif donné. En effet, le carré $\left] -\frac{\varepsilon}{n}; \frac{\varepsilon}{n} \right[\times \left] -\frac{\varepsilon}{n}; \frac{\varepsilon}{n} \right[$ contient des points Y de Ω avec $f(Y) \geq 1$, et on considère leurs homothétiques par l'homothétie de centre O et de rapport n qui sont dans Ω et dans le carré $\left] -\varepsilon; \varepsilon \right[\times \left] -\varepsilon; \varepsilon \right[$. De même que leurs symétriques par rapport à O.

13.d. Supposons que le rectangle]0; $\alpha[\times]0$; $\beta[$ contienne un point M de Ω (donc nécessairement un point tel que $k=f(X)\leq 0$)

Choisissons ε de sorte que le côté du carré $]-\varepsilon$; $\varepsilon[\times]-\varepsilon$; $\varepsilon[$ soit plus petit que la distance de M aux bords du rectangle]0; $\alpha[\times]0$; $\beta[$

Soit N un point de Ω situé dans ce même carré $]-\varepsilon$; $\varepsilon[\times]-\varepsilon$; $\varepsilon[$ de coordonnées :

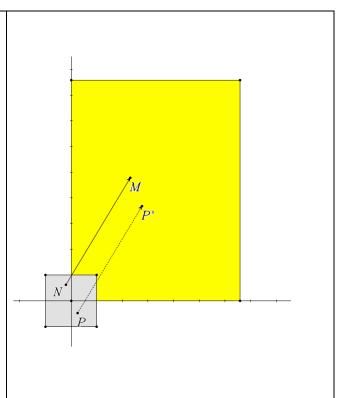
$$(k_1\alpha+m_1\,;k_1\beta+n_1)$$
 avec $k_1\geq 1$

Soit $P(k_2\alpha+m_2$; $k_2\beta+n_2)$ un deuxième point de Ω situé dans le même carré et choisi de sorte que $k_2>k_1-k$ (il en existe, voir remarque page précédente)

La translation de vecteur \overrightarrow{NM} envoie P en un point P' de Ω situé dans le rectangle]0; $\alpha[\times]0$; $\beta[$ et tel que : $f(P') = (k_2 + k - k_1) \ge 1$

Ce qui est contraire au résultat de la question 13.a.

Le rectangle]0 ; $\alpha[\times]0$; $\beta[$ ne contient aucun point M de Ω .



14.a. D'après la question **13**, le carré $]-\varepsilon$; $\varepsilon[\times]-\varepsilon$; $\varepsilon[$ contient au moins un point Y de Ω avec $f(Y) \neq 0$. Mais ce point ne peut appartenir ni au quadrant]0; $\varepsilon[\times]0$; $\varepsilon[$ (il serait dans le rectangle]0; $\alpha[\times]0$; $\beta[$) ni non plus au quadrant $]-\varepsilon$; $0[\times]-\varepsilon$; 0[(son symétrique par rapport à O serait dans ce rectangle).

Il en résulte que ce point, ou bien son symétrique par rapport à O qui est aussi dans Ω , appartient au quadrant]0; $\varepsilon[\times]0$; $-\varepsilon[$.

14.b. Supposons que le rectangle]ks; $(k+2)s] \times]kt$; (k-2)t] contienne un point M(x;y) de Ω . Les coordonnées de ce point vérifient les inégalités : $ks < x \le (k+2)s$ et $kt < y \le (k-2)t$.

Puisque Q(s,t) et l'origine du repère O appartiennent à Ω , les translatés de M par une ou plusieurs translations de vecteur $\overrightarrow{QO}(-s;-t)$ appartiennent aussi à Ω . Il en est ainsi du point M' obtenu après k translations :

 $M'(x'=x-ks\,;y'=y-kt)$. Les coordonnées de ce point vérifient les inégalités : $0 < x' \le 2s$ et $0 < y \le -2t$. Puisque s et t sont strictement plus petits que $\frac{\min(\alpha,\beta)}{2}$, ce point est dans le rectangle]0; $\alpha[\times]0$; $\beta[$. Nous avons vu que c'était impossible. L'hypothèse est à rejeter.

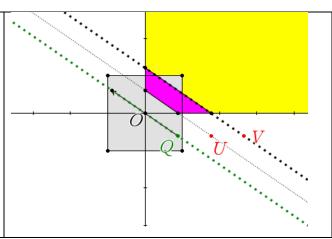
Le rectangle $[ks; (k+2)s] \times [kt; (k-2)t]$ ne contient aucun point de Ω .

14.c. L'ensemble des points P tels que $\frac{x}{s} - \frac{y}{t} = 0$ est la droite (OQ). De façon générale, les points P dont les coordonnées vérifient une relation de la forme $g(P) = \lambda$ (constante réelle) c'est-à-dire $\frac{x}{s} - \frac{y}{t} = \lambda$ sont sur une droite parallèle à (OQ).

- La droite d'équation $\frac{x}{s} \frac{y}{t} = 1$ est la parallèle à (*OQ*) qui passe par le point *U* de cordonnées (2*s*; *t*).
- La droite d'équation $\frac{x}{s} \frac{y}{t} = 2$ est la parallèle à (*OQ*) qui passe par le point *V* de cordonnées (3*s*; *t*).

Graphiquement, s'il y avait un point entre les deux droites (celle passant par U exclue, celle par V incluse) qui appartient à Ω , on pourrait en déduire par une translation $T_{k.\overrightarrow{OQ}}$ convenable un point de Ω situé dans le trapèze colorié en magenta (petite base et côtés ouverts) donc dans le rectangle]0; $\alpha[\times]0$; $\beta[$, ce qui est impossible.

Il n'y a pas dans Ω de point P tel que $1 < g(P) \le 2$.



14.d. Soit P(x; y) un point tel que $0 < |g(P)| \le 2$. Supposons que P appartienne à Ω .

Sans diminuer la généralité, on peut supposer que $0 < g(P) \le 2$, quitte à considérer le symétrique de P par rapport à O.

La question 14.c a montré qu'il n'est pas possible que $1 < g(P) \le 2$.

Il n'est pas possible non plus que g(P)=1, sinon l'homothétique P' de P par l'homothétie de centre O et de rapport 2 vérifierait g(P')=2 et serait lui aussi dans Ω , ce qui est impossible.

Il reste à étudier le cas 0 < g(P) < 1. Considérons alors l'homothétique P' de P par l'homothétie de centre O et de rapport l'entier k qui vérifie la double inégalité $\frac{1}{g(P)} < k \le \frac{1}{g(P)} + 1$

$$g(P') = \frac{kx}{s} - \frac{ky}{t} = k \cdot g(P)$$
. Utilisons l'inégalité que vérifie k :

$$\frac{1}{g(P)} \times g(P) < k. \, g(P) = g(P') \leq \left(\frac{1}{g(P)} + 1\right) \times g(P) \text{ soit } 1 < g(P') \leq 1 + g(P) \leq 2.$$

Ce point P' serait dans la bande $1 < g(P') \le 2$ et serait lui aussi dans Ω , ce qui est impossible.

Il n'y pas de point de Ω tel que $0 < |g(P)| \le 2$.

Ainsi, tous les points P de Ω qui vérifient $|g(P)| \le 2$ sont sur la droite d'équation g(P) = 0

Tout point P de Ω qui vérifie $|g(P)| \leq 2$ appartient à la droite (OQ).

14.e. Si $\varepsilon \ge \frac{\min(\alpha,\beta)}{2}$, la question est réglée par ce qu'on vient de voir puisque le point Q lui-même convient.

Il reste le cas où $0<\varepsilon<\frac{\min(\alpha,\beta)}{2}$. Dans ce cas, considérons le nombre $\varepsilon'=\min(\varepsilon,s,-t)$.

D'après la **question 14.a.** Il existe un point P(x,y) qui est à la fois dans Ω et dans le rectangle]0; $\varepsilon'[\times]0$; $-\varepsilon'[$ (donc *a fortiori* dans le rectangle]0; $\varepsilon[\times]0$; $-\varepsilon[$).

Ce point *P* est tel que
$$0 < x < s$$
 et $t < y < 0$. Donc : $-1 < g(P) = \frac{x}{s} - \frac{y}{t} < 1$

D'après la **question 14.d**, ce point appartient à la droite (OQ).

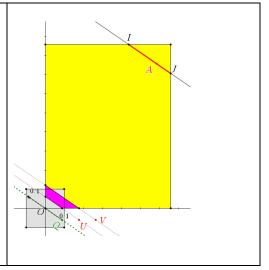
Pour tout $\varepsilon > 0$, il existe un point P qui est à la fois dans Ω , dans le rectangle]0; $\varepsilon[\times]0$; $-\varepsilon[$ et sur la droite (OQ).

P étant un tel point, $\|\overrightarrow{OP}\| \le \varepsilon\sqrt{2}$. Pour tout $\varepsilon > 0$, par translations successives de vecteur \overrightarrow{OP} ou de son opposé, on peut construire un réseau de points de Ω régulièrement échelonnés sur la droite (OQ) et dont la distance à leur voisin est majorée par $\varepsilon\sqrt{2}$.

Considérons une parallèle à (OQ) passant par un point A intérieur au rectangle]0; $\alpha[\times]0$; $\beta[$. Alors cette droite a en commun avec ce rectangle un segment]IJ[.

Supposons que cette droite contienne un point de Ω . Choisissons $\varepsilon=\frac{IJ}{\sqrt{2}}$ et construisons sur cette droite à partir de ce point, par translations successives, le réseau de points de Ω décrit cidessus. Nous obtiendrons ainsi au moins un point de Ω situé à l'intérieur du segment [IJ], donc situé dans le rectangle]0; $\alpha[\times]0$; $\beta[.$ C'est impossible.

Une parallèle à (OQ) passant par un point A intérieur au rectangle]0; $\alpha[\times]0$; $\beta[$ ne contient aucun point de Ω .



15. L'ensemble \mathcal{H} est stable pour la soustraction et il n'est pas vide puisqu'il contient x. De ce fait, il contient 0 = x - x ainsi que -x = 0 - x. Il contient 2x = x - (-x) ainsi que -2x = -x - x. Par itération k fois du procédé, pour tout entier k positif, k contient k et son opposé k.

Pour tout entier relatif k, $kx \in \mathcal{H}$, autrement dit, l'ensemble \mathcal{H} contient $k\mathbb{Z}$.

Réciproquement, soit $y \in \mathcal{H}$. Il existe un entier relatif k tel que : $kx \le y < (k+1)x$. (Cet entier est ent $\left(\frac{y}{x}\right)$).

Par stabilité pour la soustraction : $y - kx \in \mathcal{H}$. Mais cet élément vérifie : $0 \le y - kx < x$.

Puisque \mathcal{H} ne contient aucun élément de]0; x[, nécessairement y-kx=0. Il existe ainsi un entier relatif k tel que y=kx

Pour tout $y \in \mathcal{H}$, $y \in k\mathbb{Z}$, autrement dit \mathcal{H} est contenu dans $k\mathbb{Z}$. En définitive, $\mathcal{H} = k\mathbb{Z}$.

16.a. Considérons la parallèle à (*OQ*) passant par le point de coordonnées $\left(\lambda = \alpha - \frac{s}{t}\beta; 0\right)$.

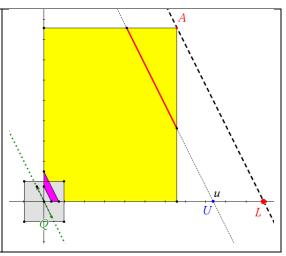
Elle a pour équation : $\frac{x}{s} - \frac{y}{t} = \frac{\lambda}{s}$, soit : $\frac{x}{s} - \frac{y}{t} = \frac{\alpha}{s} - \frac{\beta}{t}$.

Cette droite passe par le point A de coordonnées $(\alpha; \beta)$ qui est le point de Ω dont le triplet associé est le triplet (k = 1; m = n = 0).

Il s'agit de la droite (AL) passant par le sommet A « Nord-Est » du rectangle]0; $\alpha[\times]0$; $\beta[$.

Toute parallèle à (OQ) coupant l'axe Ox en un point U situé strictement entre O et L passe à l'intérieur du rectangle]0; $\alpha[\times]0$; $\beta[$ et a un segment commun avec lui. En vertu de la **question 14.f**, une telle droite ne contient aucun point de Ω .

Aucune valeur u appartenant à]0; $\lambda[$ n'appartient à l'ensemble $\Lambda.$



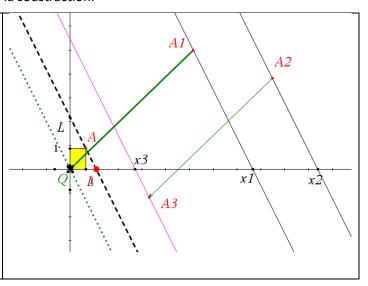
16.b. Montrons que l'ensemble Λ est stable pour la soustraction.

Soit x_1 et x_2 deux éléments de Λ . Les parallèles à (OQ) passant par les points $(x_1; 0)$ et $(x_2; 0)$ ont pour équations respectives : $\frac{x}{s} - \frac{y}{t} = \frac{x_1}{s}$ et

Elles passent chacune par un point de de Ω , le point A_1 et le point A_2 respectivement.

Le point A_3 translaté de A_2 par la translation de vecteur $\overrightarrow{A_1O}$ appartient à Ω d'après la **question** 11. Or :

$$\begin{cases} x_{A3} = x_{A2} - x_{A1} \\ y_{A3} = y_{A2} - y_{A1} \end{cases}$$



Les coordonnées de ce point A_3 vérifient : $\frac{x_{A3}}{s} - \frac{y_{A3}}{t} = \frac{x_{A2} - x_{A1}}{s} + \frac{y_{A2} - y_{A1}}{t} = \frac{x_2 - x_1}{s}$.

La parallèle à OQ passant par A_3 a pour équation $\frac{x}{s} - \frac{y}{t} = \frac{x_2 - x_1}{s}$ et coupe l'axe Ox au point d'abscisse : $x_3 = x_2 - x_1$. Il en résulte que, si x_1 et x_2 sont deux éléments de Λ , leur différence $x_3 = x_2 - x_1$ est aussi un élément de Λ .

Les deux hypothèses de la question 15 sont satisfaites :

$$\Lambda = \lambda \mathbb{Z}$$
 avec $\lambda = \alpha - \frac{s}{t}$

17.a. Les points P de Ω tels que f(P)=0 ont des coordonnées entières. Si nous considérons le point Q(s;t) lui-même qui appartient à Ω , il existe trois entiers k, m, n tels que : $s=k\alpha+m$; $t=k\beta+n$

Or, ses coordonnées vérifient $0 < s < \min(\alpha, \beta) < 1$ et $-1 < -\min(\alpha, \beta) < t < 0$.

Les cordonnées de Q sont non entières donc $f(Q) = k \neq 0$.

Le point Q' symétrique de Q par rapport à O appartient à Ω et a des coordonnées opposées.

Compte tenu de l'unicité du triplet qui le caractérise, f(Q') = -k = -f(Q).

L'un u l'autre des deux points Q ou Q' a une image par f qui est un entier strictement positif.

L'ensemble Γ contient au moins un entier strictement positif.

L'ensemble des entiers > 0 appartenant à Γ étant non vide, cet ensemble a bien un plus petit élément.

17.b. Montrons que Γ est stable pour la soustraction.

Soit k et k' deux éléments de Γ et $P(k\alpha+m;k\beta+n)$ et $P'(k'\alpha+m';k'\beta+n')$ des points de Ω situés sur la droite (OQ) qui leur sont associés. Le point P'' translaté de P' par la translation de vecteur \overrightarrow{PO} appartient à Ω d'après la question **11** et à la droite (OQ) car cette droite est globalement invariante par cette translation. Ses coordonnées sont ($k'\alpha+m'-(k\alpha+m);k'\beta+n'-(k'\beta+n')$)

Le triplet qui caractérise ce point est le triplet (k'-k; m'-m; n'-n). Ainsi : f(P'') = f(P') - f(P). Si k et k' deux éléments de Γ , leur différence k'-k est aussi un élément de Γ .

Si γ est le plus petit entier >0 appartenant à Γ , par définition l'intervalle]0; $\gamma[$ ne contient aucun élément de Γ . Les hypothèses de la question **15** sont satisfaites : $\Gamma = k\mathbb{Z}$.

17.c. Considérons un point P_1 appartenant à Ω et à la droite (OQ) tel que $f(P_1) = \gamma$.

Considérons un autre point P_2 appartenant à Ω et à la droite (OQ) tel que $f(P_2) = k_2 \gamma$ qui n'est pas homothétique de P_1 par une homothétie de centre O et de rapport entier (il en existe puisqu'on peut trouver des points convenables arbitrairement voisins de O, notamment entre O et P_1).

Soit (γ, m_1, n_1) et $(k_2\gamma, m_2, n_2)$ leurs triplets associés.

Compte tenu de l'appartenance de ces points à la droite (OQ) :

$$\frac{\gamma\alpha+m_1}{s} = \frac{\gamma\beta+n_1}{t} \text{ et } \frac{k_2\gamma\alpha+m_2}{s} = \frac{k_2\gamma\beta+n_2}{t}.$$

Puisque P_2 est choisi non homothétique de P_1 dans un rapport entier, $k_2m_1-m_2$ et $k_2n_1-n_2$

Nous pouvons en déduire :

$$\frac{s}{t} = \frac{\gamma \alpha + m_1}{\gamma \beta + n_1} = \frac{k_2 \gamma \alpha + m_2}{k_2 \gamma \beta + n_2} = \frac{k_2 (\gamma \alpha + m_1)}{k_2 (\gamma \beta + n_1)} - \frac{(k_2 \gamma \alpha + m_2)}{(k_2 \gamma \beta + n_2)} = \frac{k_2 m_1 - m_2}{k_2 n_1 - n_2}$$

Dans ce dernier rapport, tous les ingrédients sont des entiers, ce rapport est rationnel.

Le rapport $\frac{s}{t}$ ainsi que son opposé $-\frac{s}{t}$ sont des nombres rationnels.

18.a. Vu que $\frac{u}{v}$ est la forme irréductible de $-\frac{s}{t}$, une équation cartésienne d'une parallèle à (*OQ*) est l'équation $\frac{x}{v} + \frac{y}{v} = c$ où c est une constante arbitraire.

Les entiers u et v étant premiers entre eux, d'après le théorème de Bézout il existe deux entiers relatifs a et b tels que au + bv = 1

Supposons que $c=\frac{u}{v}$ et montrons que la droite d'équation $\frac{x}{u}+\frac{y}{v}=\frac{u}{v}$ passe par un point de Ω . Une équation équivalente en est l'équation : $vx+uy=u^2$. Cette droite passe par le point de coordonnées $(bu^2;au^2)$ qui est un point de Ω en tant que point à coordonnées entières. Ceci montre que $\frac{u}{v}\in \Lambda$ donc que $u\in W$.

Supposons que $c=\frac{v}{v}=1$ et montrons que la droite d'équation $\frac{x}{u}+\frac{y}{v}=1$ passe par un point de Ω . Une équation équivalente en est l'équation : vx+uy=uv. Cette droite passe par le point de coordonnées (buv; auv) qui est un point de Ω en tant que point à coordonnées entières. Ceci montre que $1=\frac{v}{v}\in\Lambda$ donc que $v\in W$.

Les entiers u et v appartiennent à W.

18.b. Dès lors que $\frac{u}{v}$ et $1=\frac{v}{v}$ appartiennent à Λ , par stabilité de cet ensemble pour l'addition, les nombres $a\frac{u}{v}$ et $b\frac{v}{v}$ appartiennent à Λ , ainsi que leur somme $\frac{au+bv}{v}=\frac{1}{v}$.

L'entier 1 appartient à W et, avec lui, tous ses multiples entiers.

$$W = \mathbb{Z}$$

19. La **question 9** a montré le sens : Si α et β sont deux irrationnels tels qu'il existe des entiers strictement positifs u et v vérifiant $\alpha u + \beta v = 1$, alors P_{\cap} est vérifiée.

Réciproquement, la **question 5** a montré que P_{\cap} ne peut être vérifiée qu'avec deux irrationnels. Faisons une synthèse des **questions 11** et suivantes qui partent de l'hypothèse « P_{\cap} est vérifiée » :

Les parallèles à la droite (*OQ*) ont une équation de la forme : $\frac{x}{s} - \frac{y}{t} = c$ soit, avec la notation $\frac{s}{t} = -\frac{u}{v}$ une équation de la forme : $\frac{x}{t} + \frac{y}{v} = c$

Puisque *s* et *t* sont de signes contraires, *u* et *v* sont de même signe, on peut sélectionner la paire d'entiers strictement positifs.

Celles qui passent par un point de Ω ont une équation de la forme : $\frac{x}{u} + \frac{y}{v} = \frac{1}{u} \times k\lambda$ avec $\lambda = \alpha + \frac{u}{v}\beta$.

La **question 18** a montré que $W=\mathbb{Z}$. Nécessairement, plus petit coefficient strictement positif $\frac{1}{v}$ est associé à celle qui coupe la demi-droite [Ox) le plus près de l'origine (celle de la **question 16.a**).

Nous obtenons :
$$\frac{1}{u} \left(\alpha + \frac{u}{v} \beta \right) = \frac{1}{v} \operatorname{soit} : \alpha u + \beta v = 1.$$

Réciproquement, si P_{\cap} est vérifiée, α et β sont deux irrationnels tels qu'il existe des entiers strictement positifs u et v vérifiant $\alpha u + \beta v = 1$.

20. Soit α et β deux réels strictement positifs. Nous avons vu en **question 3** que la condition $\max(\alpha, \beta) \ge 1$ était une condition suffisante pour que la propriété P_{\cup} soit vérifiée.

Supposons que $\max(\alpha, \beta) < 1$. Nous avons vu en **question 5 que** si l'un au moins des deux nombres α ou β était rationnel, alors il n'est pas possible que la propriété P_{\cup} soit vérifiée. L'irrationnalité des deux nombres est une condition nécessaire.

Dans un tel cas, les nombres α et $1-\alpha$ sont deux irrationnels strictement positifs de somme 1. Ils satisfont les conditions du théorème A. Les ensembles $\mathcal{E}(\alpha)$ et $\mathcal{E}(1-\alpha)$ forment une partition de \mathbb{N}^* , ils sont complémentaires : $\mathcal{E}(\alpha) = \overline{\mathcal{E}(1-\alpha)}$.

De la même façon, les ensembles $\mathcal{E}(\beta)$ et $\mathcal{E}(1-\beta)$ sont complémentaires : $\mathcal{E}(\beta) = \overline{\mathcal{E}(1-\beta)}$.

 $\text{Or}: \overline{\mathcal{E}(\alpha) \cup \mathcal{E}(\beta)} = \overline{\mathcal{E}(\alpha)} \cap \overline{\mathcal{E}(\beta)} = \mathcal{E}(1-\alpha) \cap \mathcal{E}(1-\beta). \text{ Nous obtenons dans ces conditions}:$

$$\mathcal{E}(\alpha) \cup \mathcal{E}(\alpha) = \mathbb{N}^* \Longleftrightarrow \mathcal{E}(1-\alpha) \cap \mathcal{E}(1-\beta) = \emptyset$$

Les réels α et β vérifient P_{\cup} si et seulement si les réels $1 - \alpha$ et $1 - \beta$ vérifient P_{\cap} .

En vertu du théorème démontré en question 19, la propriété P_{\cup} est vérifiée si et seulement si :

- Ou bien $\max(\alpha, \beta) \ge 1$
- Ou bien $\max(\alpha, \beta) < 1$ mais α et β sont deux irrationnels strictement positifs tels qu'il existe des entiers u et v strictement positifs vérifiant : $u(1-\alpha) + v(1-\beta) = 1$

21. Considérons trois nombres irrationnels a, b, c tels que $\mathcal{E}(a) \cap \mathcal{E}(b) = \mathcal{E}(a) \cap \mathcal{E}(c) = \emptyset$.

D'après le **théorème B**, il existe des entiers strictement positifs u, v, u' et v' tels que : $\begin{cases} au + bv = 1 \\ au' + cv' = 1 \end{cases}$

On en déduit la relation : bvu' - cuv' = u' - u.

Supposons qu'il existe des entiers strictement positifs x et y tels que bx + cy = 1.

Nous aurions à la fois : $\begin{cases} bvu' - cuv' = u' - u \\ bx + cy = 1 \end{cases}$

Or,
$$\det \begin{pmatrix} vu' & -uv' \\ x & y \end{pmatrix} = vu'y + uv'x > 0.$$

Le système d'équations en b et c représenté par les deux relations simultanées aurait des solutions.

Il serait possible d'exprimer b et c en fonction de u, v, u', v', x et y: les nombres b et c seraient des rationnels.

Cette hypothèse est à rejeter. La réciproque du théorème B ne peut pas s'appliquer.

Si
$$\mathcal{E}(a) \cap \mathcal{E}(b) = \mathcal{E}(a) \cap \mathcal{E}(c) = \emptyset$$
, alors $\mathcal{E}(b) \cap \mathcal{E}(c) \neq \emptyset$.

On ne peut pas obtenir trois ensembles disjoints deux à deux.

La copie d'écran TI-NSpire ci-contre illustre la situation des **questions 19 et 20** avec deux réels irrationnels *a* et *b* et leurs deux compléments à l'unité.

On fait afficher les 25 premiers termes des ensembles qui leur sont associés.

On peut conjecturer que

 $\mathcal{E}(a) \cap \mathcal{E}(b) = \emptyset$ et que

$$\mathcal{E}(1-a) \cup \mathcal{E}(1-b) = \mathbb{N}^*$$

